重要: 依赖于Scala的maven artifacts现在会添加一个Scala主版本的后缀,例如 "2.10" 或 "2.11". 请查阅迁移指南.

集群安装

本文主要介绍如何将Flink以分布式模式运行在集群上(可能是异构的)。

环境准备

Flink 运行在所有类 UNIX 环境上,例如 LinuxMac OS XCygwin(对于Windows),而且要求集群由一个master节点一个或多个worker节点组成。在安装系统之前,确保每台机器上都已经安装了下面的软件:

  • Java 1.7.x或更高版本
  • ssh(Flink的脚本会用到sshd来管理远程组件)

如果你的集群还没有完全装好这些软件,你需要安装/升级它们。例如,在 Ubuntu Linux 上, 你可以执行下面的命令安装 ssh 和 Java :

sudo apt-get install ssh 
sudo apt-get install openjdk-7-jre

SSH 免密码登录

译注:安装过 Hadoop、Spark 集群的用户应该对这段很熟悉,如果已经了解,可跳过。

为了能够启动/停止远程主机上的进程,master 节点需要能免密登录所有 worker 节点。最方便的方式就是使用ssh的公钥验证了。要安装公钥验证,首先以最终会运行 Flink 的用户登录 master 节点。所有的 worker 节点上也必须要有同样的用户(例如:使用相同用户名的用户)。本文会以 flink 用户为例。非常不建议使用 root 账户,这会有很多的安全问题。

当你用需要的用户登录了master节点,你就可以生成一对新的公钥/私钥。下面这段命令会在 ~/.ssh 目录下生成一对新的公钥/私钥。

ssh-keygen -b 2048 -P '' -f ~/.ssh/id_rsa

接下来,将公钥添加到用于认证的authorized_keys文件中:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

最后,将authorized_keys文件分发给集群中所有的worker节点,你可以重复地执行下面这段命令:

scp ~/.ssh/authorized_keys <worker>:~/.ssh/

将上面的<worker>替代成相应worker节点的IP/Hostname。完成了上述拷贝的工作,你应该就可以从master上免密登录其他机器了。

ssh <worker>

配置JAVA_HOME

Flink 需要master和worker节点都配置了JAVA_HOME环境变量。有两种方式可以配置。

一种是,你可以在conf/flink-conf.yaml中设置env.java.home配置项为Java的安装路径。

另一种是,sudo vi /etc/profile,在其中添加JAVA_HOME

export JAVA_HOME=/path/to/java_home/

然后使环境变量生效,并验证 Java 是否安装成功

$ source /etc/profile   #生效环境变量
$ java -version         #如果打印出版本信息,则说明安装成功
java version "1.7.0_75"
Java(TM) SE Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.75-b04, mixed mode)

Back to top

进入下载页面。请选择一个与你的Hadoop版本相匹配的Flink包。如果你不打算使用Hadoop,选择任何版本都可以。

在下载了最新的发布包后,拷贝到master节点上,并解压:

tar xzf flink-*.tgz
cd flink-*

在解压完之后,你需要编辑conf/flink-conf.yaml配置Flink。

设置jobmanager.rpc.address配置项为你的master节点地址。另外为了明确 JVM 在每个节点上所能分配的最大内存,我们需要配置jobmanager.heap.mbtaskmanager.heap.mb,值的单位是 MB。如果对于某些worker节点,你想要分配更多的内存给Flink系统,你可以在相应节点上设置FLINK_TM_HEAP环境变量来覆盖默认的配置。

最后,你需要提供一个集群中worker节点的列表。因此,就像配置HDFS,编辑conf/slaves文件,然后输入每个worker节点的 IP/Hostname。每一个worker结点之后都会运行一个 TaskManager。

每一条记录占一行,就像下面展示的一样:

192.168.0.100
192.168.0.101
.
.
.
192.168.0.150

译注:conf/master文件是用来做 JobManager HA 的,在这里不需要配置

每一个worker节点上的 Flink 路径必须一致。你可以使用共享的 NSF 目录,或者拷贝整个 Flink 目录到各个worker节点。

scp -r /path/to/flink <worker>:/path/to/

请查阅配置页面了解更多关于Flink的配置。

特别的,这几个

  • TaskManager 总共能使用的内存大小(taskmanager.heap.mb
  • 每一台机器上能使用的 CPU 个数(taskmanager.numberOfTaskSlots
  • 集群中的总 CPU 个数(parallelism.default
  • 临时目录(taskmanager.tmp.dirs

是非常重要的配置项。

Back to top

下面的脚本会在本地节点启动一个 JobManager,然后通过 SSH 连接所有的worker节点(slaves文件中所列的节点),并在每个节点上运行 TaskManager。现在你的 Flink 系统已经启动并运行了。跑在本地节点上的 JobManager 现在会在配置的 RPC 端口上监听并接收任务。

假定你在master节点上,并在Flink目录中:

bin/start-cluster.sh

要停止Flink,也有一个 stop-cluster.sh 脚本。

Back to top

添加 JobManager/TaskManager 实例到集群中

你可以使用 bin/jobmanager.shbin/taskmanager 脚本来添加 JobManager 和 TaskManager 实例到你正在运行的集群中。

添加一个 JobManager

bin/jobmanager.sh (start cluster)|stop|stop-all

添加一个 TaskManager

bin/taskmanager.sh start|stop|stop-all

确保你是在需要启动/停止相应实例的节点上运行的这些脚本。

Back to top